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On the visual growth of a turbulent mixing layer 

By J. JIMENEZ 
IBM Scientific Center, Caatellana 4, Madrid 1, Spain 

(Received 27 November 1978) 

Two models are discussed to account for the motion of the concentration interface in 
turbulent mixing layers. In the first one the interface is treated as a vortex sheet and 
its roll-up is studied. It is argued that this situation represents only the first stages of 
layer growth and another model is studied in detail in which a row of vortex cores 
entrains an essentially passive concentration interface with no vort>icity. Both models 
give values of the spreading rate in approximate agreement with observations, and 
their relation is discussed. 

1. Introduction 
The observations of Brown & Roshko (1974) on the plane shear layer provide us not 

only with a demonstration of the existance of coherent structures in turbulent flows but 
with an important insight in the mechanism of mixing. Mixing in this context is the 
process by which two streams are brought in close contact as a preliminary step to 
molecular diffusion, and this contact is concentrated in the interface between the two 
fluids. This interface is created as the streams leave the splitter plate and is initially 
the seat of both velocity and concentration discontinuities. In the first aspect it 
behaves like an active vortex sheet determining the flow field and being convected by 
it and, since vortex sheets are known to roll into spiral structures when perturbed, its 
motion has been proposed as a model for the large structures in the shear layer (Damms 
& Kiichemann 1972). As in most nonlinear problems the calculations involved in this 
one are diffcult and most of the available information comes from numerical results. 
It is clear that this process should be important in the first stages of shear layer 
development since a vortex sheet is clearly present in that zone, but this is not neces- 
sarily so in other parts of the layer. This problem is treated briefly in Q 2. 

Other models have been proposed in which the vorticity in the layer is concentrated 
in discrete cores (Winant & Browand 1974), and in these models the interface seen in 
shadowgraphs is not considered as an active sheet but just as a passive concentration 
discontinuity. The motion of this discontinuity is a much simpler linear problem that 
can be analyzed quite completely; this is the subject of most of the rest of the paper. It 
is found that the spiral structures induced in the interface to not grow linearly with 
time and that an amalgamation mechanism must be postulated if the growth of the 
layer is not to be stopped completely after a while. Such amalgamations have, of 
course, been observed in many experiments. 

The models considered in this paper are mostly deterministic ones of time-like 
evolution. However, in order to compute the expected frequency of pairing we must 
include some considerations of space dependent growth. The Iast section in dedicated 
in large part to a discussion of the differences that can be expected between both cases. 
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2. The vortex sheet model 
Consider an infinite uniform vortex sheet with strength AU.  If we perturb it locally 

so that it begins to roll at one point, this roll-up will continue until the sheet develops 
into a tight spiral whose evolution and growth rate can be easily estimated. We are 
interested mostly, in the behaviour of the part of the sheet that is about to be engulfed 
into the central spiral core and whose position determines the growth rate. The motion 
of this sheet is influenced mainly by the velocity field created by the roughly axisym- 
metric vorticity concentration in the central core. If we denote this vorticity by r(t) 
and use complex co-ordinates centred on the spiral, the trajectory of a fluid particle is 
governed by 

dZ/dt = iF/2nz,  

where the bar over a symbol stands for complex conjugation. Applying this equation 
to a particle initially located at a point on the real axis, its position a t  time t will be 

This defines a double-armed spiral with a tight, almost circular, central core and is 
thus consistent with our assumptions; its size can be characterized by the radius R at  
the point where the phase is equal to - in, 

Since the vorticity contained between two particles in the sheet is not changed by 
the rolling process and the vorticity per unit length is initially AU it  is clear that the 
total vorticity contained in the segment of sheet bounded by 7 and - 7 is just 27AU; 
if we consider the core to extend up to g = R,  we can write 

I' = 2RAU.  ( 4 )  

R = n-"UUt. ( 5 )  

When this value is introduced into (3) the equation can be integrated to give 

If we now visualize the shear layer as built of structures of this kind which are 
convected downstream while they grow linearly according to equation (5), the visual 
growth rate of the layer can be deduced as 

AU = 4n-2- s 4 R  _ -  
2- (U,+U,)t u, -I- U,' 

Not only does the velocity dependence of this formula agree with the experimental 
results (Brown & Roshko 1974) but the numerical value of the coefficient is not far from 
the commonly accepted one of 0.38. 

Actually the problem of vortex sheet roll-up can be treated more rigorously. 
Considering again an initially undisturbed uniform sheet parametrized by the initial 
position 7, the equations of motion can be written as (Birkhoff 1962) 
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FIGURE 1. A numerical solution to the similarity equation (9) for the 
roll-up of a uniform vortex sheet. 

where the integral on the right-hand side contains the effect of the vorticity distributed 
along the sheet. This equation admits a similarity solution 

z(.l;r,t) = tAUf(rl/ tAU) ( 8 )  

which grows linearly in time. The resulting similarity equation, 

is complicated and must be solved numerically. An approximate solution, showing the 
outer part of the spiral, is given in figure 1 (Jimenez 1977). 

Several things can be deduced from this solution. In the first place the growth rate 
implied is 

which is somewhat low but of the right order of magnitude. Second the structure is 
elliptical with a semi-axis ratio of 1.76; vortices in real layers also seem to be elliptical, 
and, although there are no reliable measurements of their shapes, an estimate of the 
elongation can be found from the ratio between vortex spacing and visual layer 
thickness. In  the Brown & Roshko layer this ratio is 1.6 which is close to the figure 
given above. 

Unfortunately no realistic model is possible in which the vortices grow without 
interaction. In  fact, since all structures are convected downstream with the same 
velocity and do not drift apart it  is impossible for them to grow indefinitely without 
running into each other. When two of them meet the portion of vortex sheet that falls 
in between is stretched as the two vortices try to roll it  into their core until, eventually, 
either the vortices pair or they drift apart as one of them is captured in another 
amalgamation. In the last case the intermediate sheet is left as an impoverished inter- 
face separating the fluids in the two streams but containing very little vorticity. 

The final result of this process ie a model in which the vorticity is concentrated in 

S / X  = 0.28AU/(Ul+ U2), (10) 

15 FLY 96 
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localized lumps and the two streams are separated by a passive interface which carries 
a concentration difference but not a velocity jump. This interface is entrained and 
rolled up by the active cores and constitutes the visual mixing layer observed in the 
Brown & Roshko shadowgraphs. This interpretation is supported by the pictures of 
transition taken by smoke or dye injection a t  the splitter plate (Freymuth 1966; 
Winant & Browand 1974). Since the dye labels the fluid particles of the vortex sheet 
formed as the flow leaves the plate, it  can be used to follow the evolution of the vorticity 
contained in these particles; it  is easy to see, on inspection of the pictures, that the dye 
is rapidly concentrated in cylindrical lumps while large parts of the interface are 
completely depleted. Also measurements by Winant & Browand show definite peaks 
in the vorticity distribution. 

Seen in this light the problem with models, like the one presented above, which 
depend on the rolling of an uniform vortex sheet is not how well they approximate real 
shear layers, but why they approximate them at all. We will return later to this point. 

3. The entrainment by a row of vortices 
Following the reasoning in the previous section we will now try to approximate the 

shear layer by a periodic linear array of point vortices with wavelength h and strength 
I? = AAU. these vortices determine a flow field that transports with him a passive 
interface laying initially along the real axis and separating two individually labelled but 
otherwise identical fluids. The motionof apoint in this interface is given by (Lamb 1945, 

0 1-56] &/dT = i cot 2, (11) 

where Z = X + i Y = ;rrz/A, T = rAUt/ZA, (12) 

(13) 

are suitable non-dimensional co-ordinates. This complex velocity derives from a 
potential 

in terms of which the equations of motion can be written as 

@ = $+i$ = iln(sinZ), 

and 

d$/dT = 0 

d$/dT = Id@/dZI2. 

Equation (14) gives the shape of the streamlines and is integrated immediately to 

sin2X+sinh2 Y = k2 = e @, (16) 

which can be used to express X ,  and later the right-hand side of (15), as functions of 
$ and k. Equation (15) can then be integrated to 

k2- 1 
d# = - T ,  

lo+ ( + 4k2 sin2 $)-i 
( I  - k2)2 k2 

which is easily expressed in terms of the Jacobian elliptic functions and gives finally 

These equations describe completely the motion of particles lying initially on the 
real axis with X = arcsin k. The particles follow closed orbits which for those near a 
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FIGURE 2. Position of the passive interface after being entrained by one of the vortices in a 
vortex row. -, - - - , interface; - - -, limiting streamlines. T = 2.5. 

vortex are almost circular and with a short period but which, for those coming from 
the neighbourhood of one of the stagnation points, approach the limiting streamlines 
of the familiar cat-eye ’ pattern of the flow, with a period that tends to infinity. As a 
result a material line lying initially along the real axis is progressively wound into a 
spiral whose size increases with time as the particles lying closer to the stagnation 
points, and thus describing wider orbits, are drawn further along the motion. The shape 
of this line at any given time can be computed from equations (16) and (is), and an 
example is given in figure 2. 

It should be emphasized that while the flow field produced by the row of vortices is 
stationary the shape of the interface is not, since as time passes the interface is rolled 
by the eentraI vortex in much the same way as a rubber band would be. In  the process 
it is stretched but not weakened because the property labelling it is a concentration 
jump that cannot be changed by the flow. In  fact it  can be considered that new inter- 
face is constantly being created near the stagnation points by the two streams of 
different composition being entrained by the incoming part of the flow in that region 
(see figure 2). The net effect is that the two fluids are progressively folded into one 
another and that the spiral roll grows with time. It is precisely this effect that we 
propose as a model for the visual growth of the layer since the structures seen on 
shadowgraphs are produced not by any property of the velocity field but by the concen- 
tration discontinuities. Also it is clear that those large-scale motions of the concentra- 
tion field are important in controlling the mixing process. 

Obviously only those streamlines that are closed are important in the rollup so that 
the size of the spiral is limited by the ‘ cat-eye ’ streamlines which separate the recircu- 
lating regions from the open regions of the flow. The core of the spiral can be repre- 
sented by an ellipse defined by the points marked as H and V in figure 2 and which can 
be computed from the equations as 

X H  = - arcsin k, TH = 2k2K(m)/( 1 + k2), (19) 
15-2 
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FIGURE 3. Evolution of the non-dimensional parameters of the 

interface roll-up. - - -, I'v ; -, X H  ; - - -, S. 

and Yv = -arcsinhk, T, = iTH, 

where K is the complete elliptic integral of the first kind. 
These values, together with a representative area 

s = X,Y,, 
are plotted against ellapsed time in figure 3. At first the spiral is seen to grow like T i  
but later this growth stabilizes and approaches an asymptotic size as the interface 
begins to fill the space within the limiting streamlines of the 'cat-eye' pattern. Note 
that the growth of the vertical semi-axis saturates sooner than the horizontal one so 
that, while at first the structure increases its area and entrains fluid by growing in both 
directions, soon this entrainment is used only to elongate the horizontal axis. The final 
shape coincides with that of the limiting streamlines and its elongation is 

XJY, = n/(2 arcsinh 1) = 1.78. (21 ) 

4. The effect of pairing 
The structures in the previous section do not grow linearly and, after a while, they 

do not grow at all, so that unless some process is available to rejuvenate old vortices 
they appear to be a poor model €or the entraining structures in the mixing layer. The 
answer is amalgamation. Vortex pairing is known to be a fast process in which a large 
amount of entrainment can be considered unlikely, so that the area of the resulting 
spiral will be close to twice that of the original ones. Meanwhile the wavelength also 
doubles so that the new limiting streamlines enclose four times as much area and the 
spiral finds itself with some spare space and resumes its growth. 
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If we return now to  our infinite row of vortices and assume that they all pair a t  the 
same time the result will be a new infinite row with longer wavelength. Let the nth 
pairing, at time t,,, give rise to the nth vortex row; the key parameters will be the 
fraction of area increase in the amalgamation, defined by 

where us and up are the areas at the beginning and the end of the lifetime of a given 
structure, and the length 19, of this lifetime. 

To determine this length we have to make assumptions on the pairing mechanism. 
The observations by Winant & Browand (1974) show vortices rotating around one 
another for a fraction of a turn before they amalgamate, and they explain this rotation 
by invoking the well known instability of a vortex row. Observations at higher 
Reynolds numbers are less clear and have been interpreted at times as the ‘tearing’ of 
a vortex core by nearby ones. Moore & Saffman (1975) explain the tearing by showing 
that a core of finite cross-section is unstable when subject to an external strain above 
a certain level. In  real situations both mechanisms might be difficult to distinguish since 
they are manifestations of the same basic instability and operate in similar time scales. 
As vorticity particles are perturbed above or below the dividing streamline they will 
be moved right or left by the average flow. In strong cores the rotation produced by 
vorticity is fast enough to take the displaced particle to the opposite stream before the 
deviation is too large, but in weak cores or point vortices no such mechanism is present 
and the situation is unstable. The time scale in these cases is the time, A/AlJ, needed 
by the velocity difference across the layer to span one wave length. 

When the nonlinear motion of the most unstable mode of a row of point vortices is 
computed in detail (see appendix A), the separation of the two vortices involved in a 
pairing is seen to decrease until it  reaches a minimum at the moment in which they 
cross one above the other, after which they continue to rotate and fly apart again. 
If we take this moment as the moment of pairing and disregard the question of how the 
merging of the vorticity actually comes about, we can use as an estimate of pairing 
period the time needed for the linear instability to carry the point vortices to their 
crossing amplitude 3h. If we assume an initial perturbation in vortex position with 
magnitude PA, this time is (Lamb 1945). 

8 = 4h~/nAU,  (23) 

where K is a perturbation parameter constant 

K = -In (2p) (24) 

which measures the amount of initial disorder present in the layer. 

the row doubles, the following relations are evident: 
If we now remember that in the pairing of two identical vortices the wavelength of 

4h K A, = A, 2”, 8, = 2 2”, tpn = en. TAU 

Equations (22) and (23) can be written in non-dimensional co-ordinates as 

Si, n+l = $(I +a) S,,, 0 = 2u, (26) 



454 J .  Jimenez 

S 

1 

T 
FIGURE 4. The pairing cycle represented on the non-dimensional eddy-growth curve. Solid lines 
represent growth during lifespan; dashed lines are area changes in pairing. The process approaches 
a limit cycle with end points L and 77. 

and, assuming that the pairing of two structures satisfying the 8, T relation derived 
in the last section produces a new structure satisfying that relation the evolution of 
the process can be followed graphically on the corresponding curve (see figure 4). It is 
clear from the figure that a limit cycle exists in which 

0 

and it can be shown that the process defined in (26) will always approach this cycle 
exponentially fast, independently of the initial conditions. The asymptotic state of the 
mixing layer will be given by this limit cycle and the two important points will be 
T, and Tu = TL + 0. The maximum spreading rate occurs at  TL and is given by 

The relation between wavelength and visual thickness is also computed easily. Taking 
as reference the centre point of the nth interval we have 

Both equations are plotted in figure 5 for various values of a and /3. The spreading rate 
is close to the experimental value for perturbation parameters, p, of the order of 5 %. 
Data for the wavelength vary somewhat for different authors and are usually referred 
to passing frequencies which do not correspond directly to A. The accepted values are 
around 1.5 so that the model predictions me slightly too low. 
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FIQ~RE 5 .  Growth rates and wavelengths in the shear layer for different pairings parameters. 
-, growth rate; - - -, wavelength. 0, u = 0; A ,  u = 0.1; 0, ct = 0.2. 

5. The effect of non-uniformities 
The main parameter controlling the properties of the mixing in this model is the 

initial perturbation level, p, in the layer. This level is presumably related to the amount 
of free-stream and initial boundary-layer turbulence but the precise relation is not 
easy to establish. The model predicts that the spreading rate increases with increasing 
turbulence, which is qualitatively correct, but it also seems to imply that a carefully 
controlled mixing layer should not spread at  all. 

In fact the flow inside a mixing layer is turbulent and this turbulence may be able 
to drive the pairing even under very steady external conditions. However not all the 
velocity fluctuations in the layer are useful for this purpose. If we consider a vortex 
row moving by an stationary observer with an uniform velocity he will see strong 
fluctuations caused by the passage of the vortices, but the velocity induced at the 
position of the vortex cores will still be zero as long the row is uniform. Vortex rows in 
real layers are, of course, far from uniform as some vortices downstream have already 
paired while others are still forming, and the effect of this non-uniformity is indeed 
able to induce instability. 

Assume that two vortices of strength hAU and initially at  positions 0 and h have 
coallesced into a single one with twice as much vorticity and located at  h/2 .  The 
velocity perturbation induced by this non-uniformity on the position of the kth vortex 
can be computed by subtracting from the new vortex the effect of the two old ones. 
The result is a quadrupole 

AU 1 
47~ k(k- 1)  (k-4) ’ 

Vk = -- 
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If we now write the equations of motion of the perturbed vortex row as given by 
Lamb and use the velocities in (30) to drive them we get 

where xi + iy, is the deviation of the j t h  vortex from its equilibrium position. To solve 
them we define the Fourier transform pair 

and write (31) as a set of equations among the transforms 

where (35) 

If we now assume homogeneous initial conditions and keep only terms that diverge 
with time we can express the solution to (34) as, 

which can be substituted into the inverse transform (33) to recover the motion of the 
vortices. Since our perturbation velocities and their transforms are independent of 
time we get 

xk  yk s,””’A v(p) exp &@) + ipkh) ap/2p(p)* (37) 

The main contribution to this integral comes from the neighbourhood of the most 
unstable wavenumber, p = n/h, where p ( p )  is maximum, and expanding the integrand 
around this point we get the approximation 

From equations (30) and (32) we find the perturbation component V(n/h) as 

which introduced in (38) gives us the evolution of the deviation of the cores from 
equilibrium. When this deviation is made equal to &A we get an equation for vortex 
lifetime which can be written in terms of the perturbation coefficient K as 

ex = 19.98~4, (40) 

which is solved to give 

and, from figures 5 implies a spreading rate 

K = 3.64, 

t 3 / ~  = O.23A U/( U, + U,). (41) 
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This is to be taken as a lower bound for the visual spreading rate of any mixing layer 
no matter how steady is the external flow. In deriving it we have had to deviate from 
our strictly time-like analysis and take into account the spatial development of layer. 
Other perturbations also derive from this spatial inhomogeneity, the most important 
one being probably the presence of the splitter plate, and they will add to the effect of 
pairing to give a higher lower bound to the spreading rate. Other aspects of space 
versus time growth will be discussed in the next section. 

6. Discussion and results 
We have presented a simple model of the mixing process in a plane shear layer. As 

already emphasized in the introduction the model deals mostly with the entrainment 
of scalar properties like concentration or temperature, which is a linear problem, 
instead of addressing the much harder problem of nonlinear turbulent diffusion in the 
flow field. In  fact a row of point vortices is a very poor model in this last respect since 
it induces a mean velocity profile with zero vorticity thickness and an infinite turbu- 
lence level. By asssuming a finite size for the vortex cores these problems can be 
overcome but then a new model has to be found for the growth of the cores. One such 
model is given by Moore & Saffman (1975) in which they assume that the cores grow by 
turbulent diffusion and amalgamate by internal instability. Their estimate of A/&, is 
in rough agreement with observations and, since it relates to the vorticity distribution, 
is essentially independent of the arguments in this paper. The pairing mechanism 
implied is different from the one assumed here but, as noted above, the two processes 
are approximately equivalent from the point of view of mixing. 

Experiments show that the vorticity thickness in the shear layer is about half the 
visual one suggesting that the vortex cores, if they exist, are smaller than the mixing 
structures. If this is so the effect of the finite size should not be too important for the 
entrainment mechanism in 5 3, since a more or less circular blob of vorticity looks like 
a point vortex when seen from outside, In  fact the difference in the velocity far field of 
two vorticity distributions which share total strength and centre of mass is a quadru- 
pole, behaving like r3, which can be neglected in most cases. This explains why 
models like the one in Q 2 in which vorticity is assumed to be initially distributed in an 
uniform sheet agree roughly with those in which the layer is modelled as a row of point 
vortices. In  fact a vortex row can be thought of as a vortex sheet plus a row of quadru- 
poles that is being entrained by the amalgamations into the core chosen as origin. 
This is also why a uniform row can be used as a useful model for real flows in which 
there are such things as a splitter plate and vortices at many different stages of pairing. 
All these events behave like quadrupoles and can be neglected at long ranges, although 
not in those cases, like pairings, in which close interactions are involved or in those, 
like instabilities, which are zero in a uniform row. 

One result that merits discussion is the relation between vortex lifespan and its time 
of birth, which can be computed from equations (25) as 

enit,, = I. (42) 

This quantity was measured by Roshko (1976) as 0-43 on a mixing layer with a 7: 1 
density ratio, which is a factor of two too low. More recent measurements by Hernan & 
Jimenez (1979) on a homogeneous layer give a value of 0.89. The discrepancy is 
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particularly disturbing since (42) can be derived by simple arguments involving few 
assumptions. 

Consider a vortex that develops in a layer and passes through successive generations 
separated by pairings. From dimensional considerations we can assume that its life- 
time has a probability distribution which is only a function of the ratio B/tpn,  and, 
since the times of two successive pairings are related by 

we can take averages and get 

Since the vorticity resulting from a pairing is, in the average, twice that of the original 
vortices, all scales in the flow double and the left-hand side of (44) equals 2, so that 
( S / t )  = 1 ;  the argument should be independent of the density ratio in the layer. To 
avoid this conclusion one should abandon either the concept of successive pairing 
generations or the hypothesis that lifetime is proprotional to vortex strength. This is 
conceivable if vortices of different strengths are present in the layer a t  the same time, 
as they are in real situations, especially since layers grow in space instead of time. In  
this case the lifetime could depend not only on the vortex itself but on its neighboure, 
and the dependence could be complicated. Moreover the concept of a locally uniform 
layer evolving in pairing steps might not be meaningful any more. Since local uni- 
formity simplifies considerably the calculations it would be desirable to have more 
measurements of vortex lifetimes, based on larger populations than the ones referred 
above, to test whether they agree approximately with (42). 

It is also of some interest to compute which fraction of the mixing is due to 
direct growth of the vortices and which to the pairings. Expressing the amount of 
mixed fluid by the area of the spiral structures it follows from the analysis in 5 4 that 
the relation between the two processes is (1  -a)/.. Measurements done in a recent 
computer study of one of the movies by Brown & Roshko (Hernan & Jimenez 1979) 
show very clearly t,he growth of vortex area outside pairings. The value of a implied by 
these measurements is about 0.15. 

Although the numerical agreement of the results of this model with experimental 
measurements is far from exact it is within reasonable bounds of what should be 
expect,ed from the approximations involved. Moreover the model explains qualitatively 
many of the observed features in shear layers and opens the way for more sophisticated 
treatments. One noteworthy aspect is that it lends a plausible reason for the fact that 
visual coherent structures are prominent in layers at  high Reynolds numbers, since 
a vorticity lump will entrain a passive but turbulent interface in much the same way 
as a clean laminar one and the resulting large scale concentration distribution will be 
very much the same in both cases. 

tp ,  n+l= tpn  + e n  = t p n ( l +  en/ tpn)  

<on+J/<en) = 1 + <e/t>. 

(43) 

(44) 

Appendix A 
The most unstable mode for a row of point vortices is that in which alternate cores 

move in opposite directions so that pairs rotate around one another. If the origin of 
co-ordinates is chosen at  the centre of one such pair the motion is antisymmetrical and, 
if the row wavelength is m, half the vortices move along orbits 

2, = g(T) + 2km, (A 1) 
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and the other half along (A 2) 

(A 3) 

The complex velocity induced by the upper row is 

with a similar contribution from the lower one. When this velocity is to be evaluated 
at  one of the cores the corresponding principal part of the singularity must be sub- 
tracted and therefore the motion of the vortex located a t  < is given by 

This, except for a constant factor, is exactly the same equation (11) presented and 
solved in 5 3. 

In this case the initial position of the vortex is a small perturbation of [ = - in, 
[ ( O )  = - in + p7, (A 5 )  

and the evolution in time can be read directly from (18). If p is small the resulting 
motion does not deviate appreciably from the limiting streamline 

sin2X+sinh2 Y = 1) 

cos X = $T C O S ~  +T. 

(A 6) 

(A 7) 

and, by expanding (18) around this orbit, the evolution can be written simply as 

The perturbation in X increases, as expected, exponentially and the time needed for 
the vortex to get to the crossing point X = 0 is 

T = - 2 In (ipn), (A 8) 

which, in dimensional co-ordinates is 

and does not differ significantly from the linear value used in § 4. 
Except for this evolution in time all other properties of the orbit can be computed 

along the approximate trajectory given in (A 6) and expressed as simple functions of 
X that are valid for all small values of p. The distance, 2 161, between vortices and the 
strain, e = Idw/dzI, imposed on-the cores by the flow are computed in this way on 
table I. It is clear that as the vortices proceed to the crossing point their separation 
decreases and the pairing system becomes more compact as seen from the outside, but 
the imposed strain also decreases making it harder for the Moore & Saffman instability 
to disrupt the cores. 

-~ 

X 

1.57 
1.31 
1.05 
0.78 
0.52 
0.26 
0 

2151 
3-14 
2.67 
2.30 
2.05 
1.88 
1.79 
1.76 

e 

0-33 
0-33 
0.32 
0.30 
0.25 
0.19 
0.16 

TABLE 1 
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